WorldodTech

Регистрация


Технологии вокруг нас

Скорость Wi-Fi сегодня

Новая 3D технология ...

Архитектура квантовых компьютеров

В квантовом случае возникает намного более богатая ситуация. Волновая функция квантовых состояний двухуровневой системы - квантового бита, получившего в дальнейшем название кубита (quantum bit или qubit), может представлять собой суперпозицию базисных состояний (вектор состояния) следующего вида |yñ = a|0ñ + b|1ñ, где a,b - комплексные амплитуды состояний, при этом |a|2 + |b|2 = 1. Помимо вероятностей P(0) = |a|2 и P(1) = |b|2, заполнения базисных состояний |0ñ и |1ñ, состояние кубита характеризуется когерентными или интерференционными слагаемыми в вероятности состояния |yñ, определяемых произведениями комплексных амплитуд ab* и a*b. Состояние квантового бита в отличие от классического может изменяться не только путем изменения вероятностей P(0) и P(1), но и более тонко путем изменения амплитуд состояний a и b, что соответствует поворотам вектора состояния |yñ в так называемом гильбертовом двухмерном пространстве состояний. В этом и состоит принципиальное различие классического и квантового бита.

Двум значениям кубита могут соответствовать, например, основное и возбужденное состояния атома, направления вверх и вниз спина атомного ядра, направление тока в сверхпроводящем кольце, два возможных положения электрона в полупроводнике, различающихся поляризацией фотона или фазой сверхпроводника. Квантовая система может быть макроскопической (сверхпроводники, сверхтекучие жидкости, бозе-газ), отдельной атомной частицей или колебательной модой:

Простейшим случаем двухуровневой квантовой системы является спин ядра атома или электрона I = ½ в постоянном внешнем поле B0: два уровня энергии и состояния соответствуют проекциям спина на направление B0 (рис. 1).

Рис. 1. Состояния спина Iz = ±½ - и его уровни энергии E0,1 = ±miB0/2 во внешнем поле B0 представляют логические состояния кубита |0> и |1>

Два оптических уровня энергии и состояния электрона в ионе также могут быть выбраны в качестве двух состояний кубита (рис. 2).

Рис. 2. Состояния иона Са+, соответствующие уровням энергии 2S1/2 (основной) и 2D5/2 (метастабильный) выбраны за логические |0> и |1>. Числа у стрелок показывают длину волны лазера, вызывающего переход, и время жизни иона на соответствующем уровне

2.2 Единицы квантовой информации. Квантовый регистр.

Квантовый регистр устроен почти так же, как и классический. Это цепочка квантовых битов, над которыми можно проводить одно- и двухбитовые логические операции (подобно применению операций НЕ, 2И-НЕ и т.п. в классическом регистре).

Рис. 3. Квантовый регистр - цепочка квантовых битов. Одно- или двухкубитовые квантовые вентили (NOT 1/2, NOT, CNOT и др.) осуществляют логические операции над кубитами или парами кубитов.

К базовым состояниям квантового регистра, образованного L кубитами, относятся, так же как и в классическом, все возможные последовательности нулей и единиц длиной L. Всего может быть 2L различных комбинаций. Их можно считать записью чисел в двоичной форме от 0 до 2L-1 и обозначать 0,1,2,3, . 2L-1. Однако эти базовые состояния не исчерпывают всех возможных значений квантового регистра (в отличие от классического), поскольку существуют еще и состояния суперпозиции, задаваемые комплексными амплитудами, связанными условием нормировки. Классического аналога у большинства возможных значений квантового регистра (за исключением базовых) просто не существует. Состояния классического регистра - лишь жалкая тень всего богатства состояний квантового компьютера.

Перейти на страницу: 1 2 3 4 5 6 7 8