WorldodTech

Регистрация


Технологии вокруг нас

Скорость Wi-Fi сегодня

Новая 3D технология ...

Влияние среды распространения на точностные характеристики оптических измерительных систем

В зависимости от масштабов атмосферных неоднородностей и пространственно-временных характеристик их полей проблема повышения эффективности ЛИС должна решаться на разных иерархических уровнях.

Первый уровень предусматривает адаптацию структуры ЛИС к возмущениям атмосферы или целенаправленное изменение возмущений, выбор оптимальных параметров измерительной системы, комплексирование оптических и радиотехнических измерителей. Этот уровень несет в значительной степени отпечаток индивидуальных свойств ЛИС.

Второй уровень, являющийся определяющим, связан с синтезом, пространственно-временной структуры комплекса ЛИС, оптимально согласованной со стохастической структурой облачных полей и динамикой движения ИСЗ. Комплекс ЛИС обладает всеми признаками больших систем: целенаправленностью и вероятностным характером функционирования, иерархичностью структуры, сложными переплетающимися связями и возможностью адаптации к внешним условиям.

Эффективность применения ЛИС в реальных условиях в значительной степени определяется свойствами тех случайно-неоднородных сред, которые, как правило, разделяют измерительную систему и исследуемый материальный объект. Примером случайно-неоднородной, или турбулентной, среды является прозрачная атмосфера Земли, диэлектрическая проницаемость которой случайным образом изменяется в пространстве и во времени.

Турбулентные флуктуации показателя преломления существенно ухудшают тактико-технические характеристики ЛИС (дальность действия, точность измерений и др.) как из-за искажения непосредственно измеряемых параметров световой волны (например, угла прихода), так и за счет действия значительной мультипликативной помехи.

Одним из эффективных путей уменьшения возмущающего действия полей турбулентных неоднородностей на качество функционирования ЛИС является применение быстро развивающихся в последние годы адаптивных методов компенсации искажений оптического сигнала. Сущность адаптивных методов заключается в автоматической коррекции амплитуды и фазы поля волны в плоскости передающей (приемной) апертуры лазерной системы на основании данных о турбулентных искажениях оптической волны с целью получения максимальной интенсивности излучения в плоскости исследуемого материального объекта (получения наилучшего изображения объекта).

Технические трудности реализации амплитудно-фазовой коррекции, а также то, что в ряде случаев основные ограничения на работу лазерных систем накладывают фазовые флуктуации, привели к преимущественному развитию методов фазовой компенсации. Впервые возможность преддетекторной компенсации атмосферных искажений волнового фронта в астрономических телескопах рассмотрел в 1953 г. Бэбкок. В начале 70-х годов с созданием широкополосных устройств управления волновым фронтом оптических полей (активной оптики) были созданы когерентные оптические системы с адаптацией к атмосферным искажениям сигнала. В ЛИС эти методы целесообразно использовать в системах с гетеродинными приемниками или с дифракционно-ограниченными приемниками прямого фотодетектирования.

Наибольшее распространение в измерительных системах получили методы адаптации, которые предполагают управление фазовым фронтом излучаемой волны с целью максимизации мощности лазерного излучения, распространяющегося через турбулентную среду, в плоскости исследуемого объекта. Когерентные адаптивные оптические системы с управлением волновым фронтом излучаемого поля получили название систем СОАТ (от английских слов Coherent Optical Adaptive Techniques).

Рисунок 5

Фазовый фронт оп­тической волны до и после прохождения турбулентной среды

Перейти на страницу: 1 2 3 4 5 6 7