Волоконно-оптические гироскопы
Для уменьшения колебаний поляризации предложена фазовая модуляция выходного сигнала с использованием основной волны и второй гармоники, а также метод, при котором измеряются гармоники выходного сигнала светоприемника и составляющая постоянного тока, затем выделяется расчетным путем флюктуационная составляющая масштабного коэффициента. Пробуют также вводить в систему оптическое волокно с сохранением поляризации, выполнять фазовый модулятор с направленными ответвителями, а остальные элементы — в виде волноводных устройств. Эксперименты с такими гироскопами дают разрешающую способность от 0,02 до нескольких градусов в час (время интегрирования 1 с). Для повышения разрешающей способности и уменьшения дрейфа нуля эффективно также использование суперлюминесцентного диода, обладающего низкой когерентностью (ширина волнового спектра когерентности 20 мкм).
Рис.12. Гироскоп со световым квазигетеродинированием |
На рис. 12, а представлена система, в которой: сигнал возбуждения фазового модулятора формируется путем интегрирования пилообразного напряжения и на выходе подучается сигнал квазигетеродинирования. На рис. 12, б показано изменение фазы электрического сигнала переменного тока при вращении гироскопа. Имеются и другие попытки реализации квазигетеродинного светового метода на основе фазовой модуляции. Например, система комбинируется со схемой обработки фазы (см. рис. 7), что позволяет расширить динамический диапазон и стабилизировать масштабный коэффициент, т. е. компенсировать недостатки метода фазовой модуляции. В этой системе требуется точная установка параметров формы модулирующего сигнала и трудно добиться технических характеристик, удовлетворяющих инерциальную навигацию. Путем манипуляций с формой модулирующего сигнала практически реализуется нулевой метод, но при этом возникает проблема со стабилизацией нулевой точки.
В любом случае система с фазовой модуляцией превосходит другие системы по разрешающей способности и стабильности нулевой точки и к тому же относительно проста. Поэтому расширяются работы по миниатюризации этой системы путем создания волоконных и волноводных функциональных оптических элементов, приборов интегральной оптики. В частности, западногерманская фирма SEL уже выпускает гироскопы с разрешающей способностью около 15°/ч и линейностью в пределах 1%, где для фазового модулятора используются волноводные оптические элементы. Длина волокна 100 м, радиус чувствительности катушки из оптического волокна около 3,5 см, габариты 80´80´25 мм, масса 200 г.
Системы с изменением частоты
Рис.13, а. Структурная схема волоконно-оптического гироскопа с изменением частоты |
Рис.13, б. |
На рис. 13, а представлена структура волоконно-оптического гироскопа с изменением частоты, разработанного западногерманской фирмой SEL, в нем два опорных генератора с частотой fL и fН, с помощью которых устанавливается разность фаз p, которая коммутируется с частотой fс. Все это позволяет увеличить чувствительность. В частности, в стационарном режиме частота f возбуждения AOM1 равна (fL +fН)/2, т. е. при коммутации между fН и fL выходной сигнал интерферометра не изменяется. В режиме c. установившейся частотой f составляющая fc на выходе интерферометра отсутствует, что может быть основой для обратной связи для генератора, управляемого напряжением. При вращении гироскопа частота f отклоняется от значения (fL +fН)/2 и в соответствии с установившейся разностью можно определить по формуле скорость этого вращения:
(11)
В данной системе эффективно снижаются шумы, поскольку частота fс определяется как величина, обратная периоду распространения световой волны по катушке с оптическим волокном, а частота света сигнала и света обратного рассеяния Рэлея обычно различается только как fН - fL. Динамический диапазон, как видно на рис. 13, б, простирается на шесть порядков, что является особенностью метода изменения частоты.
Если расстояние от модуляторов АОМ1 и АОМ2 до расщепителя луча неодинаково, возникает дрейф нуля. Из-за этого стабильность нулевой точки ухудшается до стабильности в системе с фазовой модуляцией. Тем не менее, эти изделия уже выпускаются (с дрейфом около 3°/ч). В них длина оптического волокна 1 км, радиус катушки 5 см. Угловое смещение на каждый отсчет частоты выходного сигнала составляет 2,95 с.