ГОСТ
нии состоит в устранении ее наклона. Для этого к выбранному в соот-
ветствии с п.1 спектру (за исключением участка с суперпозицией спект-
ров РПЦ и органики) методом наименьших квадратов подгоняют полином
второго порядка, который затем вычитают из спектра. На рис. Г.1 предс-
тавлен результат выполнения коррекции.
3 Для уменьшения шумов экспериментальный спектр подвергают цифро-
вой фильтрации. С этой целью используют рекурсивный цифровой фильтр с
симметричной экспоненциальной импульсной характеристикой, который име-
ет нулевой фазовый сдвиг на всех частотах и не дает задержки сигнала.
18
ГОСТ Р 22.3.04-95
Оптимальную постоянную времени фильтра t подбирают эксперимен-
тально: для спектров образцов, облученных дозой D> 1 Гр, t=500 мс, а
для D< 1 Гр - t=700 мс.
3.1 В случае отсутствия программы цифровой фильтрации среднюю
амплитуду шума определяют вручную на краях низкопольных и высокополь-
ных участков спектра. Для этого используют краевые участки шириной
10-15 Гс. Амплитуды шума измеряют от максимальных до минимальных зна-
чений отклонений соседних пиков.
Проводят базовую линию О-О' (рис.Г.1) по измеренным средним зна-
чениям амплитуды шумов. Проводят огибающую всего спектра эмали по
средним значениям амплитуды шумов. На краях огибающая совпадает с ба-
зовой линией О-О'.
4 После фильтрации спектра с помощью обрабатывающих программ оце-
нивают дисперсия шума в низкопольной части спектра, которая использу-
ется далее для оценки ошибки амплитуды радиационного сигнала.
5 Для определения амплитуды радиационного сигнала проводят отде-
ление наложенного на него сигнала органики. Для этого к свободному от
перекрытия участку спектра органики (рис.2) методом максимального
правдоподобия подгоняют линию Лоренца, оценивают ее параметры и произ-
водят вычитание оцененной кривой из спектра суперпозиции сигналов.
6 Амплитуды радиационного сигнала измеряют автоматически в фикси-
рованных точках с g-факторами 2,0025 и 1,9970 и затем суммируют.
7 Определение амплитуды радиационного сигнала при графической об-
работке осуществляют в следующей последовательности.
7.1 Находят максимум сигнала органики и проводят линию перпенди-
кулярную к базовой линии O-O' (линия АА_4o_0 на рис. Г.1); на половине ее
19
ГОСТ Р 22.3.04-95
высоты проводят линию В_41_0А_41_0В_41_0' параллельную О-О' до пересечения с оги-
бающей. Из точек В_41_0 и В_41_0' на линию О-О' опускают перпендикуляры и из-
меряют (в см) отрезки АС_41_0 и АС_41_0', отсекаемые ими на линии О-О'.
7.2 Величину полуширины на полувысоте _7G_0 лоренцовской линии для
сигнала органики находят с помощью уравнения:
_42_0 _7|\
_7|\ _0x_41_7 _0(_7 G_4 _0 +_7 _0(_7 G?_5 _03_5 _0+_5 _0x_41_0)_52_0)_52
_7G? _03 +_7 \\\\\\\\\\\ _0=_7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\_0 (В.1)
_7|\\ _42_7 _0 _7 |\ _0 _7 |\
(_7G?_4 _03 + x_42_0)_7 G_4 _7 _0+ (_7 G? _03_7 _0+_7 _0(_7G?_5 _03_5 _0- x_42_0)_52_0)_5 2
где x_41_0= AС_41_0, x_42_0= AС_41_0'.
Уравнение решают методом итераций.
7.2.1 Операцию с нахождением величины _7G_0 повторяют для других зна-
чений x_41_0 и x_42_0, деля отрезок А_41_0А_4o_0 пополам. Потом делят четверть отрезка
А_41_0А_4o_0 пополам и.т.д Операцию по нахождению значения _7G_0 проводят не ме-
нее трех раз. Находят среднее значение для _7G_0.
7.2.2 Для найденного среднего значения _7G_0 вычисляют точку Р (рис.
Г.1), где линия органики должна была бы пересечь базовую линию О-О' (в
случае отсутствия спектра РПЦ), в соответствии с:
_7|\
АР = _7?_0 3_4 _5._0 _7G_0 (В.2)
7.3 На базовой линии О-О' откладывают отрезок РН равный отрезку