Герконы, ферриты и магнитоуправляемые контакты
Исследования показывают, что наличие или отсутствие магнитных свойств определяется кристаллической структурой материалов и, в частности, расположением ионов двухвалентных металлов и железа между ионами кислорода. Элементарная ячейка шпинели представляет собой куб, в состав которого входит восемь структурных единиц типа МеFe2O4, т.е. 32 иона кислорода, 16 ионов трехвалентного железа и 8 ионов двухвалентного металла. Кислородные ионы расположены по принципу плотной кубической упаковки шаров. При этом возникают междуузлия двух типов: тетраэдрические, образованные окружением четырех ионов, и октаэдрические, образованные окружением шести ионов кислорода. В этих кислородных междуузлиях находятся катионы металлов. Всего в элементарной ячейке шпинели может быть заполнено 8 тетраэдрических промежутков (назовем их позициями типа А) и 16 октаэдрических мест ( позиции типа В).
Структуру, в которой все катионы двухвалентного железа занимают позиции типа А, а катионы трехвалентного железа распределяются в междуузлиях типа В, называют нормальной шпинелью. Учитывая такой характер распределения катионов по кислородным междуузлиям, формулу феррита со структурой нормальной шпинели можно представить в следующем виде:
(Мe2+)[Fe3+Fe3+]O4
где в круглых скобках указаны ионы, занимающие позиции типа А, а в квадратных - ионы в позициях типа В. Стрелками условно показано направление магнитных моментов катионов. В структуре нормальной шпинели кристаллизуются ферриты цинка (ZnFe2O4) и кадмия (CdFe2O4). Как будет показано далее, ферриты со структурой нормальной шпинели немагнитны.
Чаще встречаются ферриты с иным характером распределения катионов по кислородным междоузлиям. Структура, в которой катионы Ме2+ находятся в позициях типа В, а катионы трехвалентного железа поровну распределяются между позициями А и В, получила название обращенной шпинели. Формулу обращенной шпинели с учетом распределения катионов можно записать в виде:
(Fe3+)[Me2+Fe3+]O4
Структуру обращенной шпинели имеют ферриты никеля, кобальта, меди и некоторых других элементов.
Большинство реальных ферритов характеризуется некоторым промежуточным распределением катионов, когда и ионы Ме2+, и ионы трехвалентного железа Fe3+ занимают позиции того и другого типов. Такие структуры называют амфотерной шпинелью. Промежуточному распределению катионов соответствует структурная формула
(Me2+1-x Fe3+x)[Me2+x Fe3+1-x]O4
где параметр х характеризует степень обращенности шпинели. Структуре нормальной и обращенной шпинели отвечают значения х, равные, соответственно, нулю и единице.
2.1.2Природа магнитного упорядочения. В ферритах магнитоактивные катионы находятся достаточно далеко друг от друга, поскольку разделены анионами кислорода, не обладающими магнитным моментом. Поэтому прямое обменное взаимодействие между катионами оказывается очень слабым или отсутствует вообще. Их электронные оболочки практически не перекрываются.
2.2 Ферриты.
2.2.1Общая информация. Ферриты или магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники у ферритов имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.
Двоичные элементы на ферритах характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, относительной стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания.
К материалам и изделиям этого типа предъявляют ряд специфических требований, а для их характеристики привлекают некоторые дополнительные параметры. Основным из таких параметров является коэффициент прямоугольности петли гистерезиса Кпу, представляющий собой отношение остаточной индукции Вr к максимальной индукции Вmax:
Кпу = Вr/Вmax
Для определенности Вmax измеряют при Hmax = 5Hc. Желательно, чтобы Кпу был возможно ближе к единице. Для обеспечения быстрого перемагничивания сердечников они должны иметь небольшой коэффициент переключения Sq, численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противоположное состояние максимальной индукции.
Кроме того, ферриты должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а следовательно, иметь высокую температуру Кюри и некоторые другие свойства.