WorldodTech

Регистрация


Технологии вокруг нас

Скорость Wi-Fi сегодня

Новая 3D технология ...

Кремний, полученный с использованием геттерирования расплава

Расчеты проводились для моно- и дивакансии с межатомным потенциалом Плишкина— Подчиненова. Область 1 содержала 320 атомов в случае моновакансии и 319 атомов в случае дивакаисии, а область 2 содержала 1280 атомов. Дивакансия состояла из двух вакансий в поло­жениях (0,0,0) и (1/2, 1/2,0). Результаты расче­тов приведены в таблице.

Результмы расчетов компонент тензора объемных деформаций для моно- и днвакансии .

Компонента

Моновакансия

Дивакансия

Wo , м ^-30

-0.75

-1.14

W1 , м^-30

0.00

-1.47

Из таблицы видно, что при образовании комп­лекса из двух точечных дефектов, каждый из которых создает в среде сферически симметрич­ное поле упругих искажений, получается дефект дипольного типа. Кроме того, при этом имеет ме­сто нарушение аддитивности изменения объема, вызванного дефектами .

Равновесное распределение диполей в упругом поле геттера задается соотношением:

где (Со - концентрация диполей вдали от цент­ра. Энергия диполя в поле центра в соответст­вии с (1) определяется выражением

где эффективная поляризация дипольного облака определяется как

Величина -g, характеризующая поля центра, яв­ляется комбинацией упругих постоянных среды и включения, а также размера включения .

При проведении расчетов по формулам (2)—(5) температура, параметры g и W1 варьи­ровались с целью изучения их влияния на про­цесс геттерирования. Результаты численного мо­делирования представлены на рис. 1 и 2. Пока­заны распределения концентрации диполей и по­ляризации вблизи преципитата радиуса rp для двух случаев, отличающихся знаком упругого поля преципитата. Анализ полученных данных позволяет установить, что независимо от знака упругого поля преципитата имеет место обогаще­ние диполями пространства вблизи преципи­тата.

Рис. 1. Распределение ди­полей (а) и их поляри­зации (б) вблизи сфери­ческого преципитата с отрицательным объемным несоответствием —0.005 .

Рис. 2. Распределение ди­полей (6) и их поляризация (б)вблизи сфериче­ского преципитата с положительным объемным несоответствием -0.005 .

Диффузионная модель процесса ВГ.

Для рассмотрения кинетики образования рав­новесного распределения примеси вокруг преци­питата запишем. уравнение диффузии в виде

- где j вектор плотности потока частиц определяется выражением

После подстановки и перехода к сферическим координатам уравнение (9) принимает вид:

Уравнение (6) совместно с (3) и с соответст­вующими начальными и граничными условиями описывает эволюцию поля концентраций примес­ных комплексов С(r), а при t®¥ — равновес­ное состояние. В случае ограниченного числа частиц граничными условиями являются: на внешней поверхности j=0, на внутренней границе раздела Si—Si02, j=VsC, где Vs— коэффициент поверхностного массопереноса границы раздела кремний—окисел . Переходя в уравнении (6) к безразмерным переменным :

получим :

(7)

Результаты численного решения уравне­ния (7) показали, что при больших временах равновесное распределение является предельным для кинетических распределений. Для количест­венного представления эффективности процесса ВГ на рис. 3 представлена величина h-доля при­меси, геттерированной на преципитате, как функ­ция безразмерного времени. Кривые 1 и 2 описы­вают эффективность процесса ВГ соответствен­но с учетом и без учета упругого взаимодейст­вия. Параметр g соответствует здесь относитель­ному линейному несоответствию включения и полости в матрице, в которую он вставлен, равно­му 0,005, что типично для кислородного преципи­тата в кремнии, выращенном по методу Чохральского. Из рисунка видно, что дополнительный вклад геттерирования, вследствие упругого взаи­модействия сопоставим с величиной геттерирова­ния в отсутствие упругого взаимодействия. При этом процесс ВГ при упругом взаимодействии протекает быстрее .

Перейти на страницу: 1 2 3 4