Арифметические команды
Микропроцессор может выполнять целочисленные операции и операции с плавающей точкой. Для этого в его архитектуре есть два отдельных блока:
1) устройство для выполнения целочисленных операций;
2) устройство для выполнения операций с плавающей точкой.
Каждое из этих устройств имеет свою систему команд. В принципе, целочисленное устройство может взять на себя многие функции устройства с плавающей точкой, но это потребует больших вычислительных затрат. Для большинства задач, использующих язык ассемблера, достаточно целочисленной арифметики. Обзор группы арифметических команд и данных
Целочисленное вычислительное устройство поддерживает чуть больше десятка арифметических команд. На рисунке 27 приведена классификация команд этой группы.
Рис. 27. Классификация арифметических команд
Группа арифметических целочисленных команд работает с двумя типами чисел:
1) целыми двоичными числами. Числа могут иметь знаковый разряд или не иметь такового, т. е. быть числами со знаком или без знака;
2) целыми десятичными числами.
Рассмотрим машинные форматы, в которых хранятся эти типы данных. Целые двоичные числа
Целое двоичное число с фиксированной точкой – это число, закодированное в двоичной системе счисления.
Размерность целого двоичного числа может составлять 8, 16 или 32 бит. Знак двоичного числа определяется тем, как интерпретируется старший бит в представлении числа. Это 7,15 или 31-й биты для чисел соответствующей размерности. При этом интересно то, что среди арифметических команд есть всего две команды, которые действительно учитывают этот старший разряд как знаковый, – это команды целочисленного умножения и деления imul и idiv. В остальных случаях ответственность за действия со знаковыми числами и, соответственно, со знаковым разрядом ложится на программиста. Диапазон значений двоичного числа зависит от его размера и трактовки старшего бита либо как старшего значащего бита числа, либо как бита знака числа (табл. 9). Таблица 9. Диапазон значений двоичных чиселДесятичные числа
Десятичные числа – специальный вид представления числовой информации, в основу которого положен принцип кодирования каждой десятичной цифры числа группой из четырех бит. При этом каждый байт числа содержит одну или две десятичные цифры в так называемом двоично-десятичном коде (BCD – Binary-Coded Decimal). Микропроцессор хранит BCD-числа в двух форматах (рис. 28):
1) упакованном формате. В этом формате каждый байт содержит две десятичные цифры. Десятичная цифра представляет собой двоичное значение в диапазоне от 0 до 9 размером 4 бита. При этом код старшей цифры числа занимает старшие 4 бита. Следовательно, диапазон представления десятичного упакованного числа в 1 байте составляет от 00 до 99;
2) неупакованном формате. В этом формате каждый байт содержит одну десятичную цифру в четырех младших битах. Старшие 4 бита имеют нулевое значение. Это так называемая зона. Следовательно, диапазон представления десятичного неупакованного числа в 1 байте составляет от 0 до 9.
Рис. 28. Представление BCD-чисел
Как описать двоично-десятичные числа в программе? Для этого можно использовать только две директивы описания и инициализации данных – db и dt. Возможность применения только этих директив для описания BCD-чисел обусловлена тем, что к таким числам также применим принцип «младший байт по младшему адресу», что очень удобно для их обработки. И вообще, при использовании такого типа данных как BCD-числа, порядок описания этих чисел в программе и алгоритм их обработки – это дело вкуса и личных пристрастий программиста. Это станет ясно после того, как мы ниже рассмотрим основы работы с BCD-числами. Арифметические операции над целыми двоичными числами
Сложение двоичных чисел без знака
Микропроцессор выполняет сложение операндов по правилам сложения двоичных чисел. Проблем не возникает до тех пор, пока значение результата не превышает размерности поля операнда. Например, при сложении операндов размером в байт результат не должен превышать число 255. Если это происходит, то результат оказывается неверным. Рассмотрим, почему так происходит.