Гальванотехника и ее применение в микроэлектронике
и контактных площадок. Создание проводниковых слоев осуществляется вначале методом химического осаждения меди, а затем электролитического осаждения меди или других металлов для получения слоя толщиной 35 – 50 мкм.
Гальваническое меднение
Гальваническое меднение является важнейших операций технологического производства плат. Гальваническим осаждением меди создается необходимый по толщине слой металла в отверстиях и на проводниках печатной. Качество медного слоя, его распределение по толщине определяют качество металлизации и экономические показатели производства. Минимальная толщина слоя меди в отверстиях определена в 25 мкм. При малых толщинах меди металлизированные отверстия получаются механически непрочными и после нескольких перепаек деталей легко разрушаются. Кроме того, при малой толщине слой меди бывает очень пористым, в результате чего в процессе пайки через поры проникают газообразные продукты из диэлектрика и водяные пары, что влечет за собой плохую смачиваемость припоя и недоброкачественную пайку выводов радиодеталей в отверстиях. Характерной особенностью меднения печатных плат является наличие большого количества отверстий, подвергаемых металлизации, поэтому электролиты меднения должны обладать хорошей рассеивающей способностью и в тоже время допускать применение повышенной плотности тока в цепях интенсификации процессов.
Наличие фоторизистов или защитных красок, которые могут взаимодействовать с электролитом, что влечет за собой накопление вредных примесей органических веществ. Основным фактором, определяющим выбор электролита, является отношение толщины платы к диаметру отверстий, что имеет особое значение при меднении многослойных печатных плат, когда число слоев может доходить до 20, а толщина платы до 5 мм.
В производственной практике используют сульфатный, борфтористоводородный и пирофосфатный электролиты.
В пирофосфатном электролите медь находится в виде сложного комплекса K6Cu(P2O7)2, который образуется при добавлении избытка пирофосфата калия по реакции
Cu2P2O7 + 3 K4P2O7 ® 2K6Cu(P2O7)2
Пирофосфатный комплекс и свободный пирофосфат калия являются основными компонентами электролита. В качестве добавочных компонентов вводятся соли азотной кислоты и аммиак. Введение нитратов способствует повышению анодной
плотности тока, препятствуя разряду водородных ионов, которые связываются на катоде в ионы NH4+ по реакции
NO3- + 10H+ + 8e ® NH4+ + 3H2O
Катионы аммония содействуют более интенсивному растворению медных анодов, препятствуя образованию пассивных пленок.
Равномерное осаждение меди на поверхности платы и на отверстиях может быть обеспечено при постоянной подаче свежего электролита. При жестком закреплении платы на катодной штанге, совершающей возвратно– поступательное движение обеспечивается хороший обмен электролита в отверстиях. Наиболее характерный дефект медного осадка, возникающий из-за плохого перемешивания, заключается в образовании грубых «подгорелых» и шероховатых слоев меди в отверстиях.
Так же важен хороший контакт платы с подвеской и подвески с катодной штангой. Ухудшение контакта в любой из указанных точек приводит к тому, что толщина меди на данной плате оказывается меньше расчетной. Потеря контакта влечет за собой частичное или полное растворение меди, осевшей в начальный период электролиза. Это явление происходит из=за того, что медненная поверхность платы, не будучи поляризована катодно, становиться анодом по отношению к соседним платам, имеющим хорощий контакт с катодной штангой. Для обеспечения хорошего контакта всех плат необходимо, чтобы платы присоединялись к подвеске с помощью резьбового соединения, а контактирующая часть подвески и штанги периодически очищались от окислов.