Дросселирование пара
После дросселирования удельный объем и скорость газа возрастают (v2 > v1 и w2 > w1), а температура газа в зависимости от его природы и параметров состояния перед дросселированием может как увеличиваться, так и уменьшаться, или оставаться неизменной.
Для адиабатного процесса дросселирования справедливо уравнение
(1)
При неизменном диаметре трубы (А=const) и стационарном процессе, в котором через любое сечение массовый расход газа G=const, в соответствии с уравнением неразрывности w/v = G/A = const.
Отсюда следует, что скорость газа возрастает пропорционально увеличению объема. Однако при таком изменении скорости изменение кинетической энергии газа в сравнении с величиной его энтальпии оказывается ничтожно малым.
Таким образом, изменением кинетической энергии газа при дросселировании можно пренебречь, тогда
i1=i2 , или u1 + p1v1 = u2 + p2v2 . (2)
Данное уравнение является уравнением процесса дросселирования. Оно позволяет с помощью is- диаграммы по состоянию рабочего тела до дросселирования находить его состояние после дросселирования так, как показано на рис.3.
|
Изменение энтропии газа (пара) в результате осуществления этого обратимого процесса (равное изменению энтропии при дросселировании газа от состояния 1 до состояния 2) определяется следующим соотношением:
(3)
(4)
Из этого уравнения следует, что всегда .
Изменение температуры после дросселирования газа и пара, открытое Джоулем (1818—1889) и Томсоном (1824—1907) в 1852г., называется дроссель-эффектом Джоуля—Томсона. Опытами было установлено, что в результате дросселирования изменяется температура рабочего тела. Изменение температуры при дросселировании связано с тем, что в каждом реальном газе действуют силы притяжения и отталкивания между молекулами. При дросселировании происходит расширение газа, сопровождающееся увеличением расстояния между ними. Все это приводит к уменьшению внутренней энергии рабочего тела, связанному с затратой работы, что, в свою очередь, приводит к изменению температуры.
Температура идеального газа в результате дросселирования не изменяется, и эффект Джоуля-Томсона в данном случае равен нулю. Таким образом, изменение температуры реального газа при дросселировании определяется величиной отклонения свойств реального газа от идеального, что связано с действием межмолекулярных сил.
Предположим, что р1v1 = p2v2 и, следовательно, u2=u1. Так как v2 > v1 , то при дросселировании внутренняя потенциальная энергия газа возрастает, а внутренняя кинетическая энергия при этом уменьшается. Следовательно, при принятых условиях температура газа после дросселирования будет уменьшаться.
Обычно при дросселировании реального газа p1v1 – p2v2 >0 и u2 – u1>0, работа проталкивания газа приводит к росту внутренней энергии.
В условиях, когда работа проталкивания оказывается больше прироста внутренней потенциальной энергии ∆uпот , ее избыток идет на увеличение и внутренней кинетической энергии ∆uкин , температура газа растет (dT>0). Когда работа проталкивания меньше ∆uпот, то ∆uкин уменьшается, температура газа понижается (dT<0). При равенстве работы проталкивания и изменения внутренней потенциальной энергии температура газа остается неизменной (dT=0).