Дубление маскироваванными минеральными дубителями кож для низа обуви
При двустадийных методах дубления расход оксида хрома снижается до 1—1,1 % от массы голья в результате уменьшения массы полуфабриката примерно на 50 % благодаря двоению, строганию и обрезке лишних частей на первой стадии дубления. По имеющимся данным, использование соединений хрома при этих методах дубления составляет 70—90 %, а концентрация оксида хрома в отработанном дубильном растворе 0,5— 2 г/дм3. Двустадийыые методы дубления являются перспективными для кожевенной промышленности нашей страны. Влажный белый полуфабрикат со временем может стать универсальным полуфабрикатом, который способен додубливаться как соединениями хрома, так и растительными и синтетическими дубителями. В пользу этого свидетельствуют доступность и нетоксичность соединений алюминия, простота технологии получения влажного полуфабриката, легкость его сортировки по назначению и утилизации отходов кож (раздубливание).
Титановое дубление.
Тнтан является одним из распространенных элементов в земной коре. К важнейшим соединениям гитана относятся тетра-хлорид титана TiCl4, оксихлорид титана Т1ОС12, оксисульфат титана или титанилсульфат TiOS04, гидроксид титана Ti(OH)4 и диоксид титана ТО2 .Дубящими свойствами, но несколько более низкими, чем соединения хрома и циркония, обладают основные соединения титана (IV). В СССР для дубления используются двойная сернокислая соль титана и аммония сульфатотитанилат аммония, которая хорошо растворяется в воде и более устойчива к гидролизу, чем титанил-сульфат. Основность этой соли 42—47%, а содержание диоксида титана не менее 19 %. По внешнему виду сульфатотитанилат аммония представляет собой белый кристаллический порошок. Его растворы в воде содержат до 70 г/дм3 Т1О2. Строение, состав и свойства солей титана (IV) и циркония (IV) во многом аналогичны. Соли титана в воде легко гидролизуются с образованием основной соли титана и серной кислоты, т. е. раствор получается кислым. Дубящие соли титана в растворе находятся в виде комплексных соединений, преимущественно анионного характера, причем также образуют ол- и оксо-соединения. Олсоединения являются двух и более ядерными соединениями и со временем или при повышении температуры и щелочности переходят в оксосоединения. Комплексные соединения титана менее устойчивы, чем соединения хрома, и их стабилизация проводится с помощью органических оксикислот, двухосновных кислот и многоатомных спиртов. При неорганическом синтезе комплексных соединений, содержащих кроме титана хром и цирконий, образуются стабильные дубящие смешанные комплексы, более устойчивые к разбавлению и повышению рН, чем исходные соли титана.
Взаимодействие титановых комплексов с коллагеном, так же как и циркониевых, осуществляется с гидроксильными азотсодержащими, карбоксильными и пептидными группами и сопровождается сшиванием смежных молекулярных цепей. Дубление соединениями титана отличается от дубления соединениями хрома большей скоростью и более полным гидролизом солей титана с образованием кислой среды. Связывание дубящих соединений титана с гольем может происходить в сильнокислой среде, а оптимальное значение рН для проявления дубящих свойств соединений титана около 2,5. На связывание соединений титана с гольем оказывают влияние основность и концентрация дубящего раствора. Наибольшая степень связывания наблюдается при основности 40—60 % и концентрации дубящего раствора 40—60 г/дм3 в пересчете на TiO2. Такие растворы быстро проникают в структуру дермы, соединения титана равномерно распределяются по толщине голья и температура сваривания полуфабриката достигает 80—85°С, а при последующей нейтрализации достигает 100°С. Нейтрализация проводится после дубления в отработанном дубящем растворе. Для этого наиболее пригодна смесь сульфита натрия с уротропином. При повышении рН титановые комплексы осаждаются и интенсивнее связываются с коллагеном. Расход титанового дубителя при дублении обычно составляет 10 % от массы голья, считая на ТО2.