WorldodTech

Регистрация


Технологии вокруг нас

Скорость Wi-Fi сегодня

Новая 3D технология ...

Качество обработанной поверхности

Датчик перемещается по проверяемой по­верхности со скоростью 10—20 мм/сек. Давле­ние иглы на поверхность проверяемой детали в пределах 0,5—2,5 гс/мм2.

При подключении к профилометру осцил­лографа можно получить профилограмму исследуемой поверхности.

Для измерения шероховатости поверхности от 3-го до 9-го классов чистоты применяют двойной микроскоп В. П. Линника (рисунок 5).

Прибор состоит из двух частей: микроскопа А для освещения исследуемой поверхности, микроскопа Б для наблюдения и измерения профиля поверхности Оси обеих частей микроскопа наклонены под углом 45° к исследуемой поверхности с совпадением точек пересечения осей с предметными точ­ками объективов.

В плоскости изображения объек­тива 3 микроскопа А расположена перпендикулярно плоскости оси ми­кроскопа щель 2 с освещением от источника света 1. Объектив 3, умень­шая, дает изображение а1 щели 2 на проверяемой плоскости Р в виде узкой светящейся линии. При отсут­ствии на участке поверхности Р микронеровностей объектив 4 микро­скопа Б в плоскости сетки окуля­ра 5 даст изображение а2 той же узкой светящейся линии, а также изображение близлежащего участка исследуемой поверхности.

При том же расположении микроскопов А и Б при наличии мик­ронеровностей h часть пучка света, отраженная от участка поверх­ности Р1, при наблюдении будет казаться выходящей из точки а1 или из точки а'1 поверхности Р'1, расположенной на расстоянии 2h ниже поверхности Р. Тогда изображение точки а'2 на сетке окуляра 5 будет на расстоянии h' от оси микроскопа Б, равном

h'=2*x*h*sm45°, (5)

где х — увеличение объектива 4.

Для измерений высоты неровностей в микроскопе Б установлен окулярный микрометр.

Двойной микроскоп В. П. Линника позволяет также фотогра­фировать исследуемую поверхность с высоты неровностей от 0,9 до 60 мкм.

Для измерения микронеровностей от 0,1 до 6 мкм с увеличением от 400 до 500 применяют микроинтерферометры В. П. Линника с интер­ференционными полосами, соответствующими профилю исследуемой поверхности в данном сечении (рис. 6). С помощью окуляра произ­водят отсчеты величины а, выражающей величину высоты микронеров­ностей, и отсчет величины b, соответствую­щей расстоянию между двумя соседними интерференционными полосами, тогда вы­сота микронеровности

h=0.25*(a/b),мкм. (6)

Для определения шероховатости по­верхности в труднодоступных местах при­меняют метод снятия с исследуемой поверхности слепков, шерохо­ватость поверхности которых служит в дальнейшем критерием оценки с помощью указанных выше приборов. Искажение профиля иссле­дуемой поверхности при снятии слепка практически не превышает 2 - 3%.

В качестве материалов для слепков обычно применяют целлулоид, растворяемый в ацетоне. Для получения слепка целлулоид опускают на непродолжительное время (2 — 3 мин} в ацетон, затем приклады­вают к исследуемой поверхности и сушат в течение 10 — 50 мин (в за­висимости от шероховатости обработанной поверхности).

При технологической целесообразности для оценки микрогеомет­рии поверхности применяют также метод среза.

Исследуемую поверхность покрывают слоем хрома толщиной 5—10 мкм, а затем производят срез под углом 1 — 2°; срезанную плоскость травят, после чего фотографируют.

Фотоснимок представляет собой профилограмму, у которой гори­зонтальным увеличением является увеличение, полученное при фото­графировании, а вертикальным является горизонтальное увеличение, умноженное на увеличение, полученное от косого среза.

Увеличение от косого среза при угле среза 1° составляет 60, а при угле среза 2° — 30 раз. С помощью косого среза можно получить про­филограмму с вертикальным увеличением до 8000.

6 Зависимость шероховатости поверхностей и

точности от видов

обработки

Практикой и исследованиями определены взаимосвязи между видами обработки и шероховатостью (классами чистоты) поверхности. Так, например, установлено, что средняя высота неровностей не должна превышать 10 — 25% от допуска на обработку. Это позволило установить достижимую чистоту поверхности для различных видов обработки, а с учетом затрат, необходимых для достижения заданной чистоты, не превышающих затрат при любом другом способе обра­ботки, и экономически достижимую чистоту поверхности.

Перейти на страницу: 1 2 3 4 5