Лазерная резка: расчет зануления кабельной сети и освещенности сборочного места блока
В разделе 1.3 рассматриваются стационарные тепловые процессы для оценки их влияния на скорость резки, представленные уравнением ( 1.4, 1.5 ).
Достаточно приближенно рассматривался процесс течения газа в зоне резки, показывая лишь минимальный расход газа, при котором еще возможна резка и качественное влияние состава газа на разрушение материала.
Не учитывалось влияние явлений оптического пробоя ( возникает при q @ 107 - 108 Вт/см2 ) и экранировки излучения плазменным факелом.
1.2 Физические процессы при лазерном воздействии на поверхность твердых тел.
Поглощение и отражение лазерного излучения. В основе лазерной обработки материалов лежит способность лазерного излучения создавать на малом участке поверхности высокие плотности теплового потока, достаточные для нагрева, плавления или испарения практически любого материала. Это связанно с термическим эффектом поглощения излучения непрозрачными твердыми телами.
Световой поток лазерного излучения, направленный на поверхность обрабатываемого материала, частично отражается от нее, а частично проходит в глубь тела. Излучение, проникающее в глубь металла, практически полностью поглощается свободными электронами проводимости в приповерхностном слое толщиной 0,1- 1 мкм, эти электроны переходят в состояния с более высокими уровнями энергии, т.е. возбуждаются.
Возбужденные электроны сталкиваясь с другими электронами или узлами кристаллической решетки передают им избыток энергии.
Основная доля теплоты при лазерном нагреве переносится в глубь металла посредством электронной проводимости. Поэтому, тепловые процессы при лазерном нагреве имеют ту же физическую природу, что и традиционные способы термического воздействия на металл, это дает возможность пользоваться классической теорией теплопроводности.
Интенсивность поглощения энергии определяется значением коэффициента поглощения, который зависит от рода материала и длинны волны падающего излучения.
Поглощательная способность неокисленной металлической поверхности на длине волны лазерного излучения l = 10,6 мкм определяется уравнением: a = 112,2 (s0-1)-1/2 , где a - коэффициент поглощения; s0 - удельная электрическая проводимость металла по постоянному току, См/м.
Это выражение применимо для коэффициентов поглощения чистых, полированных поверхностей. Для материала с неочищенной, неполированною поверхностью ( материала поставки ) коэффициент поглощения зависит от состояния поверхности и может значительно превышать для чистых металлов ( табл. 1.1 ).
Таблица 1.1 Коэффициенты поглощения различных материалов a, для излучения l = 10,6 мкм, % .[2]
Материал | Поверхность в состоянии поставки | Полирован-ная поверхность |
Нержавеющая сталь |
39 |
9 |
Алюминий |
12 |
2 |
Медь |
12 |
2 |
Низкоуглеродистая сталь |
85 |
48 |
Серебро
| _ |
11 |
Рис.1.1 Зависимость коэффициента пог- лощения излучения СО2 - лазера от температуры для различных материалов [2] |
При нагревании образца электрическая проводимость металлов уменьшается, соответственно возрастают коэффициенты поглощения. Если лазерная обработка поверхности происходит в воздушной или какой-либо окислительной среде, то происходит рост оксидной пленки на поверхности образца и происходит дополнительное увеличение поглощательной способности ( рис. 1.1 ) [2].
Рис. 1.2 Характерные кривые нагрева в воздухе термически тонких мишеней непрерывным излучением СО2 - лазера при q = 4,7· 106 Вт/см2 и соответствующие кривые коэффициента эффективного поглощения aэф [2]: а - дюралюминий ; б - сталь. |